I suspect the authors read the number of active pores during sequencing and then wrongly assumed that the non-active ones had a manufacturing defect.
In my experience, most inactive pores are due to a poorly prepared sample. I don't know why, but maybe it blocks or jams the pores.
When I analyzed Oxford nano pore data a few years ago, I found it to be very sensitive to skilled sample preparation. The data quality varied so much that I could tell which of my laborant co-workers (the experienced one or the new one) had prepared the sample by analyzing the data. So I expect that the authors garage sample prep maybe wasn't great.
Coincidentally, I had a colleague who worked on building a portable sequencing lab powered by a car battery. The purpose was to be able to identify viruses by DNA from a van in rural Central Africa or wherever. Last I talked to her, the technical bottleneck was sample prep - the computational part of the van lab wasn't too hard.
In my experience, most inactive pores are due to a poorly prepared sample. I don't know why, but maybe it blocks or jams the pores.
When I analyzed Oxford nano pore data a few years ago, I found it to be very sensitive to skilled sample preparation. The data quality varied so much that I could tell which of my laborant co-workers (the experienced one or the new one) had prepared the sample by analyzing the data. So I expect that the authors garage sample prep maybe wasn't great.
Coincidentally, I had a colleague who worked on building a portable sequencing lab powered by a car battery. The purpose was to be able to identify viruses by DNA from a van in rural Central Africa or wherever. Last I talked to her, the technical bottleneck was sample prep - the computational part of the van lab wasn't too hard.