- are capable of evaluating the LLM's output to the degree that they can identify truly unique insights
- are prompting the LLM in such a way that it could produce truly unique insights
I've prompted an LLM upwards of 1,000 times in the last month, but I doubt more than 10 of my prompts were sophisticated enough to even allow for a unique insight. (I spend a lot of time prompting it to improve React code.) And of those 10 prompts, even if all of the outputs were unique, I don't think I could have identified a single one.
I very much do like the idea of the day-dreaming loop, though! I actually feel like I've had the exact same idea at some point (ironic) - that a lot of great insight is really just combining two ideas that no one has ever thought to combine before.
> are capable of evaluating the LLM's output to the degree that they can identify truly unique insights
I noticed one behaviour in myself. I heard about a particular topic, because it was a dominant opinion in the infosphere. Then LLMs confirmed that dominant opinion (because it was heavily represented in the training) and I stopped my search for alternative viewpoints. So in a sense, LLMs are turning out to be another reflective mirror which reinforces existing opinion.
Yes, it seems like LLMs are system one thinking taken to the extreme. Reasoning was supposed to introduce some actual logic but you only have to play with these models for a short while to see that the reasoning tokens are a very soft constraint on the models eventual output.
Infact, they're trained to please us and so in general aren't very good at pushing back. It's incredibly easy to 'beat' an LLM in an argument since they often just follow your line of reasoning (it's in the models context after all).
This is also true in a sense nuance will dropped in the compression mechanism and overrepresentation in the training data will get more weightage to be retained.
Totally agree, most prompts (especially for code) aren’t designed to surface novel insights, and even when they are, it’s hard to recognize them. That’s why the daydreaming loop is so compelling: it offloads both the prompting and the novelty detection to the system itself. Projects like https://github.com/DivergentAI/dreamGPT are early steps in that direction, generating weird idea combos autonomously and scoring them for divergence, without user prompting at all.
- are capable of evaluating the LLM's output to the degree that they can identify truly unique insights
- are prompting the LLM in such a way that it could produce truly unique insights
I've prompted an LLM upwards of 1,000 times in the last month, but I doubt more than 10 of my prompts were sophisticated enough to even allow for a unique insight. (I spend a lot of time prompting it to improve React code.) And of those 10 prompts, even if all of the outputs were unique, I don't think I could have identified a single one.
I very much do like the idea of the day-dreaming loop, though! I actually feel like I've had the exact same idea at some point (ironic) - that a lot of great insight is really just combining two ideas that no one has ever thought to combine before.