> Now, a team of scientists has used Marsquakes — measured by NASA’s InSight lander years ago — to see what lies beneath. Since the way a Marsquake travels depends on the rock it’s passing through, the researchers could back out what Mars’ crust looks like from seismic measurements. They found that the mid-crust, about 10-20 kilometers (6-12 miles) down, may be riddled with cracks and pores filled with water. A rough estimate predicts these cracks could hold enough water to cover all of Mars with an ocean 1-2 kilometers (0.6-1.2 miles) deep
> [...] This reservoir could have percolated down through nooks and crannies billions of years ago, only stopping at huge depths where the pressure would seal off any cracks. The same process happens on our planet — but unlike Mars, Earth’s plate tectonics cycles this water back up to the surface
> [...] “It would be very challenging,” Wright said. Only a few projects have ever bored so deep into Earth’s crust, and each one was an intensive undertaking. Replicating that effort on another planet would take lots of infrastructure, Wright goes on, and lots of water.
How much does this finding increase the likelihood of finding life on Mars? Liquid water in cracks sounds like a positive. But then what energy source could there be? No light for photosynthesis 6 miles down. No hydrothermal vent like things.
We use rock physics models and Bayesian inversion to identify combinations of lithology, liquid water saturation, porosity, and pore shape consistent with the constrained mid-crust (∼11.5 to 20 km depths) seismic velocities and gravity near the InSight lander. A mid-crust composed of fractured igneous rocks saturated with liquid water best explains the existing data.
- "Mars may host oceans’ worth of water deep underground" [according to an analysis of seismic data] https://www.planetary.org/articles/mars-may-host-oceans-wort... :
> Now, a team of scientists has used Marsquakes — measured by NASA’s InSight lander years ago — to see what lies beneath. Since the way a Marsquake travels depends on the rock it’s passing through, the researchers could back out what Mars’ crust looks like from seismic measurements. They found that the mid-crust, about 10-20 kilometers (6-12 miles) down, may be riddled with cracks and pores filled with water. A rough estimate predicts these cracks could hold enough water to cover all of Mars with an ocean 1-2 kilometers (0.6-1.2 miles) deep
> [...] This reservoir could have percolated down through nooks and crannies billions of years ago, only stopping at huge depths where the pressure would seal off any cracks. The same process happens on our planet — but unlike Mars, Earth’s plate tectonics cycles this water back up to the surface
> [...] “It would be very challenging,” Wright said. Only a few projects have ever bored so deep into Earth’s crust, and each one was an intensive undertaking. Replicating that effort on another planet would take lots of infrastructure, Wright goes on, and lots of water.
How much water does drilling take on Earth?